Multidimensional Sparse Fourier Transform Based on the Fourier Projection-Slice Theorem
نویسندگان
چکیده
منابع مشابه
Robust Sparse Fourier Transform Based on The Fourier Projection-Slice Theorem
The state-of-the-art automotive radars employ multidimensional discrete Fourier transforms (DFT) in order to estimate various target parameters. The DFT is implemented using the fast Fourier transform (FFT), at sample and computational complexity of O(N) and O(N logN), respectively, where N is the number of samples in the signal space. We have recently proposed a sparse Fourier transform based ...
متن کاملRendering using the Fourier Projection - Slice Theorem
The Fourier projection-slice theorem states that the inverse transform of a slice extracted from the frequency domain representation of a volume yields a projection of the volume in a direction perpendicular to the slice. This theorem allows the generation of attenuation-only renderings of volume data in 0 (N2 log N) time for a volume of size N 3 • In this paper, we show how more realistic rend...
متن کاملVolume Rendering using the Fourier Projection-Slice Theorem
The Fourier projection-slice theorem states that the inverse transform of a slice extracted from the frequency domain representation of a volume yields a projection of the volume in a direction perpendicular to the slice. This theorem allows the generation of attenuation-only renderings of volume data in O (N 2 log N) time for a volume of size N . In this paper, we show how more realistic rende...
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملSparse 2D Fast Fourier Transform
This paper extends the concepts of the Sparse Fast Fourier Transform (sFFT) Algorithm introduced in [1] to work with two dimensional (2D) data. The 2D algorithm requires several generalizations to multiple key concepts of the 1D sparse Fourier transform algorithm. Furthermore, several parameters needed in the algorithm are optimized for the reconstruction of sparse image spectra. This paper add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2018.2878546